This is a guest post by Alex Evanczuk, a software engineer at FiscalNote. Hello DC2!  My name is Alex Evanczuk, and I recently joined a government data startup right here in the nation's capital that goes by the name of FiscalNote. Our mission is to make government data easily accessible, transparent, and understandable for everyone. We are a passionate group of individuals and are actively looking for other like-minded people who want to see things change. If this is you, and particularly if you are a software developer (front-end, with experience in Ruby on Rails), please reach out to me at alex@fiscalnote.com and I can put you in touch with the right people.

Screen Shot 2014-07-02 at 2.13.51 PM

The topics covered by the presenters at June’s Data Science DC Meetup were varied and interesting. Subjects included spatial forecasting in uncertain environments, cell phone surveys in Africa (GeoPoll), causal inference models for improving the lives and prospects of Children and Youth (Child Trends), and several others.

I noticed a number of fascinating trends about the presentations I saw. The first was the simple and unadulterated love of numbers and their relationships to one another. Each presenter proudly explained the mathematical underpinnings of the models and assumptions used in their research, and most had slides that contained nothing more than a single formula or graph. In my brief time in academia, I've noticed that to most statisticians and mathematicians, numbers are their poetry, and this rang true at the event as well.

To most statisticians and mathematicians, numbers are their poetry.

The second was something that is perhaps well known to data researchers, but perhaps not so much to others, and that was that the advantages and influences of data science can extend into any industry. From business, to social work, to education, to healthcare, data science can find a way to improve our understanding of any field.

The second was something that is perhaps well known to data researchers, but perhaps not so much to others, and that was that the advantages and influences of data science can extend into any industry. From business, to social work, to education, to healthcare, data science can find a way to improve our understanding of any field.

More important than the numbers, however, is the fact that behind every data point, integer, and graph, is a human being. The human beings behind our data inspire our use of numbers and their deep understanding to develop axiomatically correct solutions for real world problems. The researchers presented data that told us how we might better understand emotional sentiment in developing countries, or make decisions on cancer treatments, or help children reach their boundless potential. For me, this is what data science is all about--how the appreciation of mathematics can help us improve the lives of human beings.

Missed the Meetup? You can review the audio files from the event here and access the slide deck here.